116 research outputs found

    Modelling elastic structures with strong nonlinearities with application to stick-slip friction

    Full text link
    An exact transformation method is introduced that reduces the governing equations of a continuum structure coupled to strong nonlinearities to a low dimensional equation with memory. The method is general and well suited to problems with point discontinuities such as friction and impact at point contact. It is assumed that the structure is composed of two parts: a continuum but linear structure and finitely many discrete but strong nonlinearites acting at various contact points of the elastic structure. The localised nonlinearities include discontinuities, e.g., the Coulomb friction law. Despite the discontinuities in the model, we demonstrate that contact forces are Lipschitz continuous in time at the onset of sticking for certain classes of structures. The general formalism is illustrated for a continuum elastic body coupled to a Coulomb-like friction model

    Non-deterministic dynamics of a mechanical system

    Get PDF
    A mechanical system is presented exhibiting a non-deterministic singularity, that is, a point in an otherwise deterministic system where forward time trajectories become non-unique. A Coulomb friction force applies linear and angular forces to a wheel mounted on a turntable. In certain configurations the friction force is not uniquely determined. When the dynamics evolves past the singularity and the mechanism slips, the future state becomes uncertain up to a set of possible values. For certain parameters the system repeatedly returns to the singularity, giving recurrent yet unpredictable behaviour that constitutes non-deterministic chaotic dynamics. The robustness of the phenomenon is such that we expect it to persist with more sophisticated friction models, manifesting as extreme sensitivity to initial conditions, and complex global dynamics attributable to a local loss of determinism in the limit of discontinuous friction.Comment: 22 pages, 8 figure

    Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations

    Get PDF
    In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude-frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy.Comment: 32 pages, 4 figure

    Invariant spectral foliations with applications to model order reduction and synthesis

    Get PDF
    The paper introduces a technique that decomposes the dynamics of a nonlinear system about an equilibrium into low order components, which then can be used to reconstruct the full dynamics. This is a nonlinear analogue of linear modal analysis. The dynamics is decomposed using Invariant Spectral Foliations (ISF), which is defined as the smoothest invariant foliation about an equilibrium and hence unique under general conditions. The conjugate dynamics of an ISF can be used as a reduced order model. An ISF can be fitted to vibration data without carrying out a model identification first. The theory is illustrated on a analytic example and on free-vibration data of a clamped-clamped beamComment: New revision in response to reviewers' comment

    Characteristic matrices for linear periodic delay differential equations

    Get PDF
    Szalai et al. (SIAM J. on Sci. Comp. 28(4), 2006) gave a general construction for characteristic matrices for systems of linear delay-differential equations with periodic coefficients. First, we show that matrices constructed in this way can have a discrete set of poles in the complex plane, which may possibly obstruct their use when determining the stability of the linear system. Then we modify and generalize the original construction such that the poles get pushed into a small neighborhood of the origin of the complex plane.Comment: 17 pages, 1 figur

    Data-driven reduced order models using invariant foliations, manifolds and autoencoders

    Full text link
    This paper explores how to identify a reduced order model (ROM) from a physical system. A ROM captures an invariant subset of the observed dynamics. We find that there are four ways a physical system can be related to a mathematical model: invariant foliations, invariant manifolds, autoencoders and equation-free models. Identification of invariant manifolds and equation-free models require closed-loop manipulation of the system. Invariant foliations and autoencoders can also use off-line data. Only invariant foliations and invariant manifolds can identify ROMs, the rest identify complete models. Therefore, the common case of identifying a ROM from existing data can only be achieved using invariant foliations. Finding an invariant foliation requires approximating high-dimensional functions. For function approximation, we use polynomials with compressed tensor coefficients, whose complexity increases linearly with increasing dimensions. An invariant manifold can also be found as the fixed leaf of a foliation. This only requires us to resolve the foliation in a small neighbourhood of the invariant manifold, which greatly simplifies the process. Combining an invariant foliation with the corresponding invariant manifold provides an accurate ROM. We analyse the ROM in case of a focus type equilibrium, typical in mechanical systems. The nonlinear coordinate system defined by the invariant foliation or the invariant manifold distorts instantaneous frequencies and damping ratios, which we correct. Through examples we illustrate the calculation of invariant foliations and manifolds, and at the same time show that Koopman eigenfunctions and autoencoders fail to capture accurate ROMs under the same conditions.Comment: 48 pages, 16 figures. Update: some bugs were fixed in the numerical calculation

    Invariant spectral foliations with applications to model order reduction and synthesis

    Get PDF

    Model Reduction of Non-densely Defined Piecewise-Smooth Systems in Banach Spaces

    Get PDF
    In this paper a model reduction technique is introduced for piecewise-smooth (PWS) vector fields, whose trajectories fall into a Banach space, but the domain of definition of the vector fields is a non-dense subset of the Banach space. The vector fields depend on a parameter that can assume different discrete values in two parts of the phase space and a continuous family of values on the boundary that separates the two parts of the phase space. In essence the parameter parametrizes the possible vector fields on the boundary. The problem is to find one or more values of the parameter so that the solution of the PWS system on the boundary satisfies certain requirements. In this paper we require continuous solutions. Motivated by the properties of applications, we assume that when the parameter is forced to switch between the two discrete values, trajectories become discontinuous. Discontinuous trajectories exist in systems whose domain of definition is non-dense. It is shown that under our assumptions the trajectories of such PWS systems have unique forward-time continuation when the parameter of the system switches. A finite-dimensional reduced order model is constructed, which accounts for the discontinuous trajectories. It is shown that this model retains uniqueness of solutions and other properties of the original PWS system. The model reduction technique is illustrated on a nonlinear bowed string model.Comment: 11 figures, 55 pages. Accepted for publication in Journal of Nonlinear Scienc
    • …
    corecore